Dynamic Motion Planning in Low Obstacle Density Environments
نویسندگان
چکیده
A fundamental task for an autonomous robot is to plan its own motions. Exact approaches to the solution of this motion planning problem suffer from high worst-case running times. The weak and realistic low obstacle density (L.O.D.) assumption results in linear complexity in the number of obstacles of the free space [11]. In this paper we address the dynamic version of the motion planning problem in which a robot moves among moving polygonal obstacles. The obstacles are assumed to move along constant complexity polylines, and to respect the low density property at any given time. We will show that in this situation a cell decomposition of the free space of size O(n (n) log n) can be computed inO(n (n) log n) time. The dynamic motion planning problem is then solved in O(n (n) log n) time. We also show that these results are close to optimal.
منابع مشابه
High-Speed Navigation Using the Global Dynamic Window Approach
Many applications in mobile robotics require the safe execution of a collision-free motion to a goal position. Planning approaches are well suited for achieving a goal position in known static environments, while real-time obstacle avoidance methods allow reactive motion behavior in dynamic and unknown environments. This paper proposes the global dynamic window approach as a generatlization of ...
متن کاملMotion Planning in Environments with Low Obstacle Density
We present a simple and e cient paradigm for computing the exact solution of the motion planning problem in environments with a low obstacle density. Such environments frequently occur in practical instances of the motion planning problem. The complexity of the free space for such environments is known to be linear in the number of obstacles. Our paradigm is a new cell decomposition approach to...
متن کاملTime optimal trajectory planning in dynamic environments
This paper presents a method for motion planning in dynamic environments, subject to robot dynamics and ac-tuator constraints. The time optimal trajectory is computed by rst generating an initial guess using the concept of velocity obstacle. The initial guess, computed by a global search over a tree of avoidance maneuvers, is then optimized using a dynamic optimization. This method is applicabl...
متن کاملSafety, Challenges, and Performance of Motion Planners in Dynamic Environments
Providing safety guarantees for autonomous vehicle navigation is an ultimate goal for motion planning in dynamic environments. However, due to factors such as robot and obstacle dynamics, e.g., speed and nonlinearity, obstacle motion uncertainties, and a large number of moving obstacles, identifying complete motion planning solutions with collision-free safety guarantees is practically unachiev...
متن کاملMotion Planning and Obstacle Avoidance for Mobile Robots in Highly Cluttered Dynamic Environments
After a quarter century of mobile robot research, applications of this fascinating technology appear in real-world settings. Some require operation in environments that are densely cluttered with moving obstacles. Public mass exhibitions or conventions are examples of such challenging environments. This dissertation addresses the navigational challenges that arise in settings where mobile robot...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1997